Binary phase diagrams
Other much more complex types of phase diagrams can be constructed, particularly when more than one pure component is present. In that case concentration becomes an important variable. Phase diagrams with more than two dimensions can be constructed that show the effect of more than two variables on the phase of a substance. Phase diagrams can use other variables in addition to or in place of temperature, pressure and composition, for example the strength of an applied electrical or magnetic field and they can also involve substances that take on more than just three states of matter.
One type of phase diagram plots temperature against the relative concentrations of two substances in a binary mixture called a binary phase diagram, as shown at right. Such a mixture can be either a solid solution, eutectic or peritectic, among others. These two types of mixtures result in very different graphs. Another type of binary phase diagram is a boiling point diagram for a mixture of two components, i. e. chemical compounds. For two particular valotile components at a certain pressure such as atmospheeric pressure. a boiling point diagram shows what vapor (gas) compositions are in equilibrium with given liquid compositions depending on temperature. In a typical binary boiling point diagram, temperature is plotted on a vertical axis and mixture composition on a horizontal axis.
A simple example diagram with hypothetical components 1 and 2 in a non-azeotropic mixture is shown at right. The fact that there are two separate curved lines joining the boiling points of the pure components means that the vapor composition is usually not the same as the liquid composition the vapor is in equilibrium with. See Vapor-Liquid Equilibrium for a fuller discussion.
In addition to the above mentioned types of phase diagrams, there are thousands of other possible combinations. Some of the major features of phase diagrams include congruent points, where a solid phase transforms directly into a liquid. There is also the peritectoid, a point where two solid phases combine into one solid phase during heating. The inverse of this, when one solid phase transforms into two solid phases during heating, is called the eutectoid.
A complex phase diagram of great technological importance is that of the iron-carbon system for less than 7% carbon.
The x-axis of such a diagram represents the concentration variable of the mixture. As the mixtures are typically far from dilute and their density as a function of temperature is usually unknown, the preferred concentration measure is mole fraction. A volume based measure like molarity would be unadvisable.
No comments:
Post a Comment